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Bulgac-Kusnezov-Nosé-Hoover thermostats

Alessandro Sergi>|<
School of Physics, University of KwaZulu-Natal, Pietermaritzburg, Private Bag X01 Scottsville, 3209 Pietermaritzburg, South Africa

Gregory S. Ezra'
Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, USA
(Received 3 February 2010; published 19 March 2010)

In this paper, we formulate Bulgac-Kusnezov constant temperature dynamics in phase space by means of
non-Hamiltonian brackets. Two generalized versions of the dynamics are similarly defined, one where the
Bulgac-Kusnezov demons are globally controlled by means of a single additional Nosé variable, and another
where each demon is coupled to an independent Nosé-Hoover thermostat. Numerically stable and efficient

measure-preserving time-reversible algorithms are derived in a systematic way for each case. The chaotic
properties of the different phase space flows are numerically illustrated through the paradigmatic example of
the one-dimensional harmonic oscillator. It is found that, while the simple Bulgac-Kusnezov thermostat is
apparently not ergodic, both of the Nosé-Hoover controlled dynamics sample the canonical distribution

correctly.
DOI: 10.1103/PhysRevE.81.036705

I. INTRODUCTION

In condensed matter studies, there are many situations in
which molecular dynamics simulation at constant tempera-
ture [1-3] is needed. For example, this occurs when mag-
netic systems are modeled in terms of classical spins [4-7].
Deterministic methods [8—10], based on non-Hamiltonian
dynamics [11-19], can sample the canonical distribution pro-
vided that the motion in the phase space of the relevant de-
grees of freedom is ergodic [1,3]. However, classical spin
systems are usually formulated in terms of noncanonical
variables [20,21], without a kinetic energy expressed through
momenta in phase space, so that Nosé dynamics cannot be
applied directly. To tackle this problem, Bulgac and Kusn-
ezov (BK) introduced a deterministic constant-temperature
dynamics [22-24], which can be applied to spins. A number
of numerical approaches to integration of spin dynamics can
be found in the literature [25-28]. However, BK dynamics,
as any other deterministic canonical phase space flow, is able
to correctly sample the canonical distribution only if the mo-
tion in phase space is ergodic on the timescale of the simu-
lation. In general, this condition is very difficult to check for
statistical systems with many degrees of freedom, while it is
known that, despite its simplicity, the one-dimensional har-
monic oscillator provides a difficult and important challenge
for deterministic thermostatting methods [9,29-31].

In this paper, we accomplish two goals. First, by reformu-
lating BK dynamics through non-Hamiltonian brackets
[14,15] in phase space, we introduce two generalized ver-
sions of the BK time evolution which are able to sample the
canonical distribution for a stiff harmonic system. Second,
using a recently introduced approach based on the geometry
of non-Hamiltonian phase space [19], we are able to derive
stable and efficient measure-preserving and time-reversible
algorithms in a systematic way for all the phase space flows
treated here.
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The BK phase space flow introduces temperature control
by means of fictitious coordinates (and their associated mo-
menta in an extended phase space) traditionally called “de-
mons.” Our generalizations of the BK dynamics are obtained
by controlling the BK demons themselves by means of ad-
ditional Nosé-type variables [8]. In one case, the BK demons
are controlled globally by means of a single additional Nosé-
Hoover thermostat [8,9]. In the following this will be re-
ferred to as Bulgac-Kusnezov-Nosé-Hoover (BKNH) dy-
namics. In the second case, each demon is coupled to an
independent Nosé-Hoover thermostat. This will be called the
Bulgac-Kusnezov-Nosé-Hoover chain (BKNHC), and corre-
sponds to “massive” NH thermostatting of the demon vari-
ables [32]. The ability to derive numerically stable measure-
preserving time-reversible algorithms [19] for Nosé
controlled BK dynamics is very encouraging for future ap-
plications to thermostatted spin systems.

This paper is organized as follows. In Sec. II, we briefly
sketch the unified formalism for non-Hamiltonian phase
space flows and measure-preserving integration. The BK
dynamics is formulated in phase space and a measure-
preserving integration algorithm is derived in Sec. IIL
The BKNH and BKNH-chain thermostats are treated in
Secs. IV and V, respectively. Numerical results for the one-
dimensional harmonic oscillator using these thermostats are
presented and discussed in Sec. VI. Section VII reports our
conclusions.

In addition we include several appendices. A useful op-
erator formula is derived in Appendix A, while invariant
measures for the BK, BKNH, and BKNHC phase space
flows are derived in Appendices B-D, respectively.

II. NON-HAMILTONIAN BRACKETS AND MEASURE-
PRESERVING ALGORITHMS

Consider an arbitrary system admitting a time-
independent (extended) Hamiltonian expressed in terms of
the phase space coordinates x;, i=1,...,2N. In this case, the
Hamiltonian can be interpreted as the conserved energy of
the system.
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Upon introducing an antisymmetric tensor field (general-
ized Poisson tensor [21,33]) in phase space, B(x)=-B"(x),
one can define non-Hamiltonian brackets [14—16] as

faby=3 25,2, (1)

where a=a(x) and b=b(x) are two arbitrary phase space
functions. The bracket defined in Eq. (1) is classified as non-
Hamiltonian [14-16] since, in general, it does not obey the
Jacobi relation, i.e., in general the Jacobiator J# 0, where

[21]
J={a.{b.c}} +{b.{c.a}} +{c.{a.b}}, (2)

with ¢=c(x) arbitrary phase space function (in addition to
the functions a and b, previously introduced). If J+ 0, the
tensor B;; is said to define an “almost-Poisson” structure [34]
(such systems have also been called “pseudo-Hamiltonian”

[33]).
An energy conserving and in general non-Hamiltonian
phase space flow is then defined by the vector field

2N
= H) = 2 B, 3)

ij s
0%

where conservation of H(x) follows directly from the anti-
symmetry of B;;.

It has previously been shown how equilibrium statistical
mechanics can be comprehensively formulated within this
framework [16]. It is also possible to recast the above for-
malism and the corresponding statistical mechanics in the
language of differential forms [17,18]. If the matrix B is
invertible (this is true for all the cases considered here), with
inverse ();;, we can define the 2-form [35]

1 . .
Q= Eﬂijdx’ Ady . (4)

The dynamics of Eq. (3) is then Hamiltonian if and only if
the form Eq. (4) is closed, i.e., has zero exterior derivative,
dQ=0 [35]. This condition is independent of the particular
system of coordinates used to describe the dynamics.

The structure of Eq. (3) can be taken as the starting point
for derivation of efficient time-reversible integration algo-
rithms that also preserve the appropriate measure in phase
space [19]. Measure-preserving algorithms can be derived
upon introducing a splitting of the Hamiltonian

n

H= E H,, (5)

a=1

which in turn induces a splitting of the Liouville operator
associated with the non-Hamiltonian bracket in Eq. (1),

oH,

ﬁxj

2N
Loxi={x;,H,} = E Bij (6)

J=1

When the phase space flow has a nonzero compressibility
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2N

k=2

ij=1

8, ot

0"xl‘ ﬁxj ’

™)

the statistical mechanics must be formulated in terms of a
modified phase space measure [12-18]

-w(x)

w (8)

w=e
where

w=d' NdXP A .. AdxPN 9)

is the standard phase space volume element (volume form
[35]) and the statistical weight w(x) is defined by

% = k(x). (10)

It has been shown that, provided the condition

3
g[e—wweﬁ]:o, i=1,...2N (11)
J

is satisfied, then
L,w=0 for every «, (12)

so that the volume element ® is invariant under each of the
L, [19]. The condition (11) is satisfied for all the cases con-
sidered below, so that, exploiting the decomposition in Eq.
(6), algorithms derived by means of a symmetric Trotter fac-
torization of the Liouville propagator:

ng—1 ng—1
exp[7L] =[] exp{ %La} exp exp[ 7L, ] 1T exp[ gL”rﬁ]
a=1 =1

(13)
are not only time-reversible but also measure preserving.
II1. PHASE SPACE FORMULATION
OF THE BK THERMOSTAT

A phase space formulation of the BK thermostat can be
achieved upon introducing the Hamiltonian

2
A V(g) + Kip) + Kpo +ipT(L+ 8 (14a)
2m mg mg
—H(g.p)+ 50D KD g ()
mg mg

where (¢q,p) are the physical degrees of freedom (coordinates
and momenta), with mass m, to be simulated at constant
temperature 7, while ¢ and & are the BK ‘demons’, with
corresponding inertial parameters m; and my, and associated
momenta (p;,p,) [22-24]. K, and K, provide the kinetic en-
ergy of demon variables, and for the moment are left arbi-
trary.

Upon defining the phase space point as x
=(¢,4.&,p.pe-p)=(x1,Xy,X3,%4,X5,X¢), one can introduce
an antisymmetric BK tensor field as
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0 0 0 1 0 -G
dG,
0 0 0 0 —
dp
dG,
0 0 0 0 0 En
B = T as)
-1 0 0 0 -G, O
dG,
0 -— 0 G, 0 0
dp
dG,
G, 0 -— 0 0
dq
where G, and G, are functions of system variables (p,q)
only.

Substituting BBX and HBX into Eq. (3), we obtain the
energy-conserving equations

=1 _ Gala.p) oK,

(16a)
Jdp me  Ipg
_ 1G9k, (16b)
_ 1 3Gy 9K, (160)
mg dq o7p§’
oH G(q,p) K
pe- 1(@1’)_1’ (16d)
aq mg;  dp;
. oH G,
p=G _kBT(?_» (16e)
p
p‘f:GzaH—kBTa_(;z (16f)
J aq

The associated invariant measure for the BK flow is dis-
cussed in Appendix B.
Algorithm for BK dynamics

In order to derive a measure preserving algorithms, the
first step, following Eq. (5), is to introduce a splitting of HEX:

H*=V(g), (17a)
2
i (17b)
2m
HYS = kT, (17¢)
Hy® = kgTE, (17d)
K
H‘S?’K:—Ll(p ). (17¢)
myg
K
HE¥ = Klp) (171)

mg

A measure-preserving splitting of the Liouville operator then
follows from Eq. (6):
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sk Va V.4

= ——+Gy——, 18a
1 aq dp 2(%] (7P§ ( )
d d
=L g2~ (18b)
mdq madpg
G, 9
LK = — ke —— (18¢)
dp dp;
3G, 0
e (184d)
dq dpg¢
1 9G, 0K, & G,dK, 9
B —— Al (18¢)
mg dp dpgdL  mg dpg dp
G,dK, & 1 9G, 3K, 0
PR 22— 22 (18f)

mg dpg dq  mg dq Ipy €

Upon choosing a symmetric Trotter factorization of the BK
Liouville operator based on the decomposition

8
LP¥= > Bk (19)

a=1

a measure-preserving algorithm can be produced in full gen-
erality.

In practice, a choice of K, K,, G, and G, must be made
in order obtain explicit formulas. In this paper, we make the
following simple choices:

Gl =p, (203)

Gy,=4q, (20b)
P2

K, =%, (20¢)
2
p2

K,= —2'2 (20d)

In terms of Egs. (20a)—(20d), the antisymmetric BK tensor
becomes

0o 0 0 1 0 -g¢g
0O O 0 0 1 0
~ 0O O 0 o0 o 1
BBK = , (21)
-1 0 0 0 -p O
0O -1 0 p 0 O
g 0 -10 0 O
and the Hamiltonian reads
_ p;  D:
A =H(q.p)+ 75+ 5+ kT + 8. (22)
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The split Liouville operators now simplify as follows:

pok__ V. VI

+q T, (23a)
: dq dp " dq dpg
e 2 p2 J
Ly =——+— (23b)
mdq mdp,
~BK J
L% =—kgT—, (23c¢)
~BK J
LK = kyT—, (234d)
g proa
IBR= Pe 9 L SN Ay 44 (23e)
mgdf  mg dp mé«é’p77
d g pra
ZéBKz—& —+£§—+£§— (23f1)

For the purposes of defining an efficient integration algo-
rithm, we combine commuting Liouville operators as fol-
lows:

J J
LR =[BR L BR_ F(g)— +F, — 24a
A 1 4 (q) ap pgﬁpg (24a)
J J
LEKEZ];K+Z133K=£—+ [ (24b)
mdq $dp¢
K= ek pek__ P, 9 pe 9 ped  ped
> 6 mg dp mg dq mgdd mgo"f’
(24c¢)
where
F(g)=-0Vlidq, (25a)
F, = v kgT 25b
pg_qaq —ABL ( )
2
p
Fp{— - —kgT. (25¢)
Defining
UEK(T) = exp[TZEK], (26)
where a=A,B,C, one possible reversible measure-

preserving integration algorithm for the BK thermostat is
then

U(r)B¥ = U2K<£>UEK<%—>UEK(£>U§K(T)

<or(oZlr(l) e
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Using the so-called direct translation technique [36] we
can expand the above symmetric breakup of the Liouville
operator into a pseudocode form, ready to be implemented
on the computer:

TP
q — q+ -

Q) m :U2K<I),

4
P — pet 4F

\
Py
myg
Pe

mg

p — DCEXp|—

q €xXp| —

Nlﬂ I\Jlﬂ

.. :UBK<I),
W { — §+I£{ > c\2
2m§
TPe

£ E g

P

q — q+ Z_
m
(iif) :U§K<Z),

P — DPet F

4
p — p+7TF
(iv) :URS(7),
Pe — p§+ TFPg
\
7D
— g+
1 1 4m

v) 7 — p+ L2 >:U§K<I>,

4m, 4
T
P — p§+4F[,g
J
\
Tp
p — peXp[—Em—é]
14
r
_Tht
' q — lep|: 2m§:| ol T
(vi) T U5 )
{ - gt
2m§
¢ — g+t
Tp
s vl B
(vii) :UEK(Z) .
pr — p§+4F
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IV. BULGAC-KUSNEZOV-NOSE-HOOVER DYNAMICS
The BKNH Hamiltonian

K K 2
HBKNHzH(q’p)+1_(PQ+2_(P§Z+&z_

my my 2m,7

+kgT(L+ &) +2kzTy (28)

is simply the BK Hamiltonian augmented by the Nosé vari-
ables (7,p,) with mass m,. With the antisymmetric BKNH
tensor

@BKNH
0 0 0 0 1 0 -G, 0
9G,
0 0 0O 0 0 — 0 0
dp
3G,
0 0 0 0 0 0 — 0
dq
0 0 0O 0 0 0 0 1
-1 o o o0 0 -G, 0o 0 |
9G,
O—EOOGIO O—pg
Gzo—a—Gzooo 0 -p;
dq
0 0 0 -1.0 pr pe O
(29)

we obtain from Eq. (3) equations of motion for

the phase space variables x=(q.l.&,7.p.ps.pepy)
=(.X:1,xz,X3,X4,XS,x6,X7,xg):

._0H  Gy(q.p) 9K,

q (30a)
Jdp mg  Ipg
_ 139Gk, (300
_ 1 3Gy 9K, 00)
mg dq c?pg’
=", (30d)
n;
JH Gi(q,p) K
p=- 1(qp)_1’ (30¢)
aq mg ap;
. oH G p
b= G —ksT— = p 2 (30f)
p dp m,
=G,— —kyT—= - p,;—2, 30
P¢ 2 aq B aq Pgmﬂ (30g)
JK oK
;= DL Pet2 oy (30h)

Here, a single Nosé variable is coupled to both of the BK
demons ¢ and & The associated invariant measure is dis-
cussed in Appendix C.
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Algorithm for BKNH dynamics
The Hamiltonian can be split as

H¥N = v(g), (31a)

p2
Hy N = — (31b)
2m
HYNH = T, (31c)
HENH = T (314d)
K
HEKNH_ Kilpd Gle)
mg
K
g Kopd (31f)
mg
p2
Hy N = = (31g)
2m,7
HEN = 2k, Ty, (31h)

The measure-preserving splitting [ 19] of the Liouville opera-
tor

ﬂHBKNH J
L,=BPRNIe 2 (32)
: dx;  dx;
yields
aVvV ad aVv d
LB — — 6, —— (33a)
dq dp dq Ipy
d J
BKNH _ £ 2 (33b)
mdq map;
G, @
LB g r—1— (33¢)
dp dpy
G, 9
T (33d)
dq dpg
BKNH 1 (9G1 (QKI Jd Gl 07[(1 d ﬂé,Kl J
e
mg dp dpgd{ mgdpgdp  my dpg dp,
(33e)

pua__GoKo 0 1 0GKy 0 peiks o

mg dpg dq  mg dq Ipg 9§ mg&pgép,?’

(331)
g _Po 0 Py 0 Py O aa
7 P & £
myomn my Py My D¢
d
L = —2f, T—. (33h)
&p,]
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At this stage, we leave the general formulation and adopt
the particular choice of K, K,, G;, and G, given in Eq. (20).
The antisymmetric BKNH tensor becomes

0o 0 0 01 0 —-g O

o 0 o0 o0 0 1 0 0

o o0 o0 o0 o0 o0 1 O

FBKNH o 0 O 0 0 0 O 1
-1 0 0 0 0 -p 0 0 |

0O -1 0 0 p 0 O )4

g 0 -1 0 0 0 O p
_0 0 0 -10 p, pg O i

(34)

and the Hamiltonian simplifies to

2 2
H¥NY = H(g,p) + _g_ Le Doy kpT(&+ &) +25T7.
2m 2m§ 2m,,

(35)
The split Liouville operators are now
av d av
Z?KNH=———+q——, (36a)
dq dp dq Ip¢
FBKNH _ P 9 P2 J
L, (36b)
m &q m &p{
~BKNH J
L3 = — kBT_’ (36C)
~BKNH J
L, =—kgT—, (364d)
d a p; d
ppowm_Pel Pe, 9 Pr 0 (36¢)
mgdf m; dp  mgdp,
) a9 p; d
EGBKNH=—pi —+£§—+£§—, (36f)
d J d
s Ba By, o By, 5 (36g)
mydn my &pg m, “dpg
FBKNH _ J
Lg — 2kpT—. (36h)
apy

For the purposes of defining an efficient integration algo-
rithm, we combine commuting Liouville operators as fol-
lows:

LEKNH = ZIEKNH + L4BKNH + L7BKNH

Py 9 P p J
—F(q)—+ — -z —Kp§+Fp>—
dp m,dn m ¢/ dpg

(37a)

S
pgﬁp; (
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LBKNH _ LzBKNH + [BKNH _ P +F,—— (37b)
m ﬁq ﬁap
L]éKNH — ZISSKNH + ZngNH + I’:BKNH
__bg 9 pg 9 prd ped 9
mg dp  mg dq  m L mgdé p’?pﬂ’
(37¢)
where
Vv
Flg)=-—, (38a)
dq
Y kT 38b
Pe— qaq —ABLo ( )
2
P
FP{=Z_kBT’ (38C)
P . Pi
F, ==+ =% _2k,T. (38d)
Tomg o myg
In L, there appears an operator with the form
Pk J
Li= __i+F-_’ 39
( mkp p,) O"p, ( )

where (k,i)=(x,&) for L,. The action of the propagator as-
sociated with this operator on p; is derived in Appendix A,
and is given by

-1
e™ip,; =p,»e_7(Pk/mk) + TFple_T(Pk/zmk)(sz—k) sinh[ T&] .
1 mk

The apparently singular function

-1
(Tﬂ) sinh[#} (41)
2mk 2mk
is in fact well behaved as p;— 0, and can be expanded in a
Maclaurin series to suitably high order [37]. In our imple-
mentation we used an eighth order expansion.

The propagators for the BKNH dynamics can now be de-
fined as

UBKNH(T) =expl7L, [ BENH] (42)

where a=A,B,C. One possible reversible measure-
preserving integration algorithm for the BKNH thermostat
can then be derived from the following Trotter factorization:

T T T
U(’T)BKNH — UgKNH( Z) U]éKNH( E) UgKNH( Z) UEKNH(T)

% UgKNH(4>UBKNH< ;) UgKNH(‘U. (43)

The direct translation technique gives
pseudocode:

the following
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e
. q — (4 4
(i)
-
pe = pet by,
-
p - peXp[—-ﬁ
2m§
.
g — qem{—-&
2m§
-
) ¢ — g+-2%
2m{
-
£ - gt
ng
T
Py — pn"'EFp;
T
— g+ —=
q q 4

IS
—r

T
:UEKNH<Z) ,

} . UEKNH( ’T) ,

Tp
9 — q+7 -
) 4m : UgKNH( i’) ,
T
P — p{+ZFpg
|
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
BBKNHC= O O O O
-1 0 0 0
4G,
0 — 0 0
dp
G
G, 0 -—2
dq
0 0 0 -1
0 0 0 0
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o 28]
My
L] 2]
2m§
. TP 7
vi) ¢ — §+Ej§ }:U]()’;KNH(E>,
£ - grott
2m§
T
Py = +§FI7 )
T
q — q+Z—
m
(vii) :U};KNHG ) .
P — Pet F

4

V. BULGAC-KUSNEZOV-NOSE-HOOVER CHAIN

For simplicity, we explicitly treat only the case, in which
the p, and p; demons are each coupled to a standard Nosé-
Hoover thermostat (Iength one). It would be straightforward
to couple each of the demons to NH chains [32], and the
general case can be easily inferred from what follows. Define
the Hamiltonian

HBKNHC_H(q p)+ (pé) K>(p §) _77_+£2(_
my myg 2m 2m

+kgT({+ &+ m+ X). (44)

Upon defining the phase space point x=(q,¢,&, 7,Xx.p,

PesPesPyoPy) = (X1,X2,X3,X4,X5,X6,X7,X3,X9,X10) and  the
antisymmetric BKNHC tensor

01 0 -G, 0 0
9G,

0O 0 — 0 0 0
dp
JG,
0 0 — 0 0
dq
0O 0 0 0 0

. (45)
0 0 -G, 0 0 0

0 0 p, 0 0
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associated non-Hamiltonian equations of motion are

J HBKNHC
xi — BEKNHC— (46)

07xj

with i=1,...,10.

Algorithm for BKNHC chain dynamics

Splitting the BKNHC chain Hamiltonian as

HYNC = v(g), (47a)
p2
HYNC = — (47b)
2m
HEENHC — g1 (47¢)
HYNHC = T (47d)
K
e _ Ki0g. (47e)
mg
K
HEKNHC Kby (47f)
mg
p2
Zm,]
HEENHE = 1T, (47h)
p2
H"NHC = =X (47i)
2m,,
Hyg €= kyTx, (47j)

we obtain the corresponding measure-preserving splitting of
the Liouville operator

(9H2KNHC J

&xj ﬁxi.

L= Bj*e (48)

At this stage we go directly to Eq. (20). The antisymmet-
ric Nosé-Hoover-Bulgac-Kusnezov tensor becomes

PHYSICAL REVIEW E 81, 036705 (2010)

E)B KNHC

S O O © O

S O O O O O

S O O O O o o O
|

S O O g © O = O O O
o~

S O g © O = O O o ©o

O O O O O O o O O
o

SO OO T O o o o o =~
|
<
SO O O O o o —~= O

S O O
(e
(e}
|
—

e}
o
)
|
—
e}
S
o

(49)
the Hamiltonian
_ P; Pi Py Dy
HBKNHC = (4 1) + L e e Py

Zm{ 2m§ 2m,7 ZmX

+kpT({+ &+ 7+ X) (50)
and associated Liouville operators
v

v a
Z]?KNHC:____*_q i
dq dp¢

Sla

34 3 (51a)
2

peranc P9 7 0

, (51b)
madq mdp;

a
LBXNHC — g7 — | (51c)

Jd

ZEKNHC = — kyT—, (51d)

&pg
P J  p; o
ZSBKNchﬂ__Bé _+££—, (51e)
mgd& mg dp  mgdp,
J J pr 9
ZgKNHCz_Bf_ _+£§—+£§-—, (Slf)
mg dq  mgd§  mgdp,

fBKNHC_ Py 9Py 0
m

7 Pr s (51g)
,,ﬁn my aps

P
LEXNHC - _ kBTa—, (51h)

Py
J

J
T M Syt (s1)
myox My opg

~ d
L™ == kg T~ (51)
9 X

We combine commuting Liouville operators as follows:

LEKNHC — Z]?KNHC [:'EKNHC I:;BKNHC

+ +

1% d 1%
=Flg)—+2x =y (2 Pxp v F )= (52a)
¢ Pg
dp  m,dx my Ip¢
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LgKNHC = Z:}ZBKNHC + E?KNHC + Z173KNHC

Jd J J
=£—+&Z—+(—&pg+Fp>—, (52b)
mdq m,dn m, ¢/ dpy
LléKNHC — ZIS3KNHC + Z’6BKNHC + ZgKNHC + Zl?é(NHC
__Pe 9 pe 9 P9
mg dp mg dq  mgdd
J J J
+£§—+FP—+ P (52¢)
mg 9& Py Py
h
where oV
Flg)=-—, (53a)
dq
F, = » kgT (53b)
pg_qaq —Apl,
2
p
Fpgz ; —kBT, (530)
P
F, ==% kT, (53d)
7 m§
P
F, =5 —JyT. (53¢)
X ]/ng

Both in LﬁKNHC and LEKNHC there appears an operator with
the form

TP
— + -
q a 4m

-
i 7 — n+-&
4m,]

-1
T T
P — pge—(f/ét)(p,/m,?) +ZFp£e—<r/4><p,/2mﬂ)(_£rz_)

exp| —
p —p p|: 2
q — qexp[—
{ = feott
(ii)
R
2m§
T
Py — p"7+EFP§
T
Px — pX+§FPX
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Pk

J
Li=\-"%p,+F, | —,
i ( mkp[ p’)o"pi

where (k,i)=(x,&) for L, and (k,i)=(%,{) for L. Again
following the derivation in Appendix A, we find

-1
T&) sinh[
2mk

The function (T%)‘lsinh[T%] is treated through an eighth
order expansion [37].
The propagators

(54)

Pk
T |.
ka]

(55)

eTLipl‘ =pie—7(pk/mk) + TFpAe—T(pk/ka)(
1

(56)

with a=A,B,C can now be introduced. One possible revers-
ible measure-preserving integration algorithm for the
BKNHC chain thermostat is then

d

4

T (e
Z)UE‘KNH (
X UEKNHC(T)

P

5) UgKNHC(

> UgKNHC( i’) U]éKNHC(

UEKNHC( T) — GXp[ TZI;KNHC] ,

U(7)BKNHC _ UgKNHC( Z) UgKNHC(

2

i)
(57)

In pseudocode form, we have the resulting integration algo-
rithm:

>:UBKNHC<I> ,
B 4

m

7
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3\

TP
— + -
1 1 4m
T T
(i) 7 — 7+ 22 >:U,‘§KNHC<—>,
4m, 4
-1
by — pemegmy) Tp e—<7/4><p7/2m7)<1£71_> sinh| T2z
¢ ¢ 477 42m, 42m,
J
\
p — p+F
p
— x+r =
(iv) X X m, >:UEKNHC( 2,
-1
Pe — pge_T(”X/’"X)+7'F[, e_f(p)/z’"x)(r—pL> sinh| r2x
£ 2m,, 2m,,
J
\
TP
— g+——
i i 4m
v) 7 — 77+:—1-£7Z >:UgKNHC<I)’
m, 4
-1
by — pe@eymy) Tp e—(r/4>(p,/2m,,>(1£m> sinh| T2
¢ ¢ 4" 7 2m, 42m,
D )
P — DPEXp =
ng
r
R
2m§
{ = genit
. 2m T
(vi) ¢ }:UEKNHC<E)’
£ — groit
2m§
T
Py = p,ﬁEF,,
T
Py — pX+EF”x J
N
¢ — q+is
4dm

r
(vii) 7 — 77+—&
4m77

-1
T T
pr — peTIemy) 4 " Fp{e—vm)(p,/zm,,)(_zﬂm)

VI. NUMERICAL RESULTS

In its simplicity, the dynamics of a harmonic mode in one
dimension is a paradigmatic example for checking the cha-
otic (ergodic) properties of constant-temperature phase space
flows and the correct sampling of the canonical distribution.
It is well known that it is necessary to generalize basic Nosé-

7]

m

n

Hoover dynamics [1,8,9] to thermostats such as the Nosé-
Hoover chain [32,37] in order to produce correct constant-
temperature averages for systems such as the harmonic os-
cillator.

Some time ago, BK dynamics was devised to provide a
deterministic thermostat for systems such as classical spins
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FIG. 1. Comparison of the total extended Hamiltonian versus
time (normalized with respect to its value at t=0) for the harmonic
oscillator undergoing simple Bulgac-Kusnezov dynamics (HBK),
NH controlled Bulgac-Kusnezov dynamics (HB¥NH) and Bulgac-
Kusnezov-Nosé-Hoover chain dynamics (HBXNHC) Two curves
have been displaced vertically for clarity. The time-reversible
measure-preserving algorithms developed in this paper conserve the
extended Hamiltonian to high accuracy in all three cases.

[23,24]. To ensure efficient thermostatting, BK found it nec-
essary to introduce several demons per thermostatted degree
of freedom, where each demon was taken to have a different
and in principle complicated coupling to the system degree
of freedom [23,24]. In the present work, we keep the form of
the system-thermostat coupling as simple as possible, in or-
der to facilitate the formulation of explicit, reversible and
measure-preserving integrators [19]. Tt is then of interest to
investigate the ability of our BK-type thermostats to produce
the correct canonical sampling in the case of the harmonic
oscillator. Interest in harmonic modes is also justified by the
possibility of devising models of condensed matter systems
in terms of coupled spins and harmonic modes, as already
done in quantum dynamics with so-called spin-boson models
[38]. We therefore investigate the performance of our inte-
gration schemes on the simple one-dimensional harmonic os-
cillator.

For the particular calculations reported here, the oscillator
angular frequency, all masses and kzT were taken to be unity.
The time step in all cases was 7=0.0025, and all runs were
calculated for 10° time steps, starting from the same initial
conditions: harmonic oscillator coordinate ¢=0.3, all other
phase space variables zero at r=0.

The measure-preserving algorithms derived here result in
stable numerical integration for all the three cases treated:
BK, BKNH, and BKNHC chain dynamics. Figure 1 shows
the three extended Hamiltonians (normalized by their respec-
tive initial time value) versus time. All three Hamiltonians
are numerically conserved by the corresponding measure-
preserving algorithm to very high accuracy (which is main-
tained in all the three cases).

However, the basic BK phase space flow is not capable of
producing the correct canonical sampling for a harmonic
mode. This can be easily checked since the canonical distri-
bution function of the harmonic oscillator is isotropic in
phase space and its radial dependence can be calculated ex-
actly. Details of this way of visualizing the phase space sam-
pling have already been given in [14,15]. Figure 2, display-
ing the comparison between the theoretical and the
calculated value of the radial probability in phase space,

PHYSICAL REVIEW E 81, 036705 (2010)
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FIG. 2. Radial phase space probability for a harmonic oscillator
under Bulgac-Kusnezov dynamics. The continuous line shows the
theoretical value while the black bullets display the numerical re-
sults. The inset displays a plot of the phase space distribution of

points along the single trajectory used to compute the radial
probability.

clearly shows that the BK dynamics is not able to produce
canonical sampling. A look at the inset of Fig. 2, showing the
phase space distribution for the harmonic mode, also imme-
diately shows that the dynamics is not ergodic.

The same analysis has been carried out for BKNH and
BKNHC phase space flows, and these are displayed in Figs.
3 and 4, respectively. Within numerical errors, both BKNH
and BKNHC thermostats are able to produce the correct ca-
nonical distribution for the stiff harmonic modes.

Introduction of a single, global Nosé-type variable in the
BKNH thermostat effectively introduces additional coupling
between the two demon variables. The effectiveness of the
BKNH thermostat is consistent with our findings (results not
discussed here) that introduction of explicit coupling be-
tween demons in BK thermostat dynamics also leads to effi-
cient thermostatting of the harmonic oscillator.

VII. CONCLUSIONS

We have formulated Bulgac-Kusnezov [23,24], Nosé-
Hoover controlled Bulgac-Kusnezov, and Bulgac-Kusnezov-
Nosé-Hoover chain thermostats in phase space by means of

0.08

0.06 - a

AbvLosnpws

o 0.04 +

-4-3-2-101234

0.02 + q

00 05 1 15 2 25 3 35 4
r

FIG. 3. Radial phase space probability for a harmonic oscillator
under Nosé-Hoover controlled Bulgac-Kusnezov dynamics. The
continuous line shows the theoretical value while the black bullets
display the numerical results. The inset displays a plot of the phase
space distribution of points along the single trajectory used to com-
pute the radial probability.
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FIG. 4. Radial phase space probability for a harmonic oscillator
under Bulgac-Kusnezov-Nosé-Hoover chain dynamics. The con-
tinuous line shows the theoretical value while the black bullets dis-
play the numerical results. The inset displays a plot of the phase
space distribution of points along the single trajectory used to com-
pute the radial probability.

non-Hamiltonian brackets [14,15]. We have derived time-
reversible measure-preserving algorithms [19] for these three
cases and showed that additional control by a single Nosé-
Hoover thermostat or independent Nosé-Hoover thermostats
is necessary to produce the correct canonical distribution for
a stiff harmonic mode.

Measure-preserving dynamics of the kind discussed here
is associated with equilibrium simulations (where, for ex-
ample, there is a single temperature parameter 7). Stationary
phase space distributions associated with nonequilibrium
situations are much more complicated than the smooth equi-
librium densities analyzed in the present paper [11,39,40].
Nonequilibrium simulations of heat flow could be carried out
by extending the present approach to multimode systems
(e.g., a chain of oscillators) coupled to BK-type demons with
associated NH thermostats corresponding to two different
temperatures [41-43].

The techniques presented here for derivation and imple-
mentation of thermostats have been shown to be efficient and
versatile. We anticipate that analogous approaches can be
usefully applied to systems of classical spins coupled to both
harmonic and anharmonic modes.

APPENDIX A: OPERATOR FORMULA
We wish to determine the action of the propagator asso-

ciated with the Liouville operator Eq. (39). This is equivalent
to solving the evolution equation (recall i # k)

dp; ( Dk )
—=\-—p;+F, |, Al
i m Pt Ep (A1)
from =0 to r=r7. Integrating, we have
m T
_ m(_ LS F,,_) =, (A2)
Dk my Kan

giving
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p J
pi1) = CXP[ 7(— “pi+ Fp,>—]p,» (A3a)
my '/ dp;
m
=pie Py —EF (1 g, (A3b)
Pr '
sinh{ sz—k]
m
=p,e” P + 1F ,,,e"pk/ - ZTk2 (A3c¢)
! )43
Lk
ka

APPENDIX B: INVARIANT MEASURE OF THE BK
PHASE SPACE FLOWS

The phase space compressibility of the phase space BK
thermostat is

OB, oy __ 1 9G19K, 190G, 9K,

KBK = - .
ox; ox; mg dp dpy  mg dq Ipg
(B1)
Upon introducing the function
K, K
H$K=H+—l+—2, (B2)
Mg myg
one can easily find that
1 dHE®
=— , B3
KBK kT dt (B3)
so that the invariant measure in phase space reads
du=dx expl— f dl‘KBK:| , (B4a)
t
=dx exp[- BH}"]., (B4b)
=dx exp[- BH " Jexp[{+ €], (B4c)

as desired.

APPENDIX C: INVARIANT MEASURE OF THE BKNH
PHASE SPACE FLOWS

The phase space compressibility of the NH controlled
Bulgac-Kusnezov thermostat is

BKNH
B IHgxnu
ox; ox;

1 G, K 1 G, K
B R B e I L B (1)
mg; dp dpy  mg dq Ipg m,

KBKNH =

Upon introducing the function

K, K 2
H?KNH=H+—'+—2+£”—, (C2)
my Mg 2m,,

we have

036705-12



BULGAC-KUSNEZOV-NOSé-HOOVER THERMOSTATS

1 dHZ®
=— , C3
KBKNH kpT di (C3)
so that the invariant measure in phase space is
du=dx expl— J dlKBKNHi| , (C4a)
t
=dx exp[— BHA N, (C4b)
=dx exp[— BHP* M exp[{ + £+ 27]. (C4c)

APPENDIX D: INVARIANT MEASURE OF THE BKNHC
CHAIN PHASE SPACE FLOWS

The phase space compressibility of the Nosé-Hoover-
Bulgac-Kusnezov chain is

PHYSICAL REVIEW E 81, 036705 (2010)

« _ BN 9 emc
BKNHC o, o,
__1096GK 19G0K, py_ Py
m; dp dpg  mg dq dpg  m, m,
(D1)
Upon introducing the function
K. K 2 2
H?KNHC=H+—1+—2+£”—+£X—, (D2)
mg mg 2m,  2m,
we have
1 dHZ®
=— , D3
KBKNHC kpT dt (D3)
so that the invariant measure in phase space reads
du=dx exp{— fdtKBKNl-lc:| , (D4a)
t
=dx exp[— BHENHC], (D4b)
=dx exp[— BHP*NHC lexp[ £ + £+ 7+ x]. (D4c)
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